Multi-robot operator control unit
نویسندگان
چکیده
Space and Naval Warfare Systems Center, San Diego (SSC San Diego) has developed an unmanned vehicle and sensor operator control interface capable of simultaneously controlling and monitoring multiple sets of heterogeneous systems. The modularity, scalability and flexible user interface of the Multi-robot Operator Control Unit (MOCU) accommodates a wide range of vehicles and sensors in varying mission scenarios. MOCU currently controls all of the SSC San Diego developmental vehicles (land, air, sea, and undersea), including the SPARTAN Advanced Concept Technology Demonstration (ACTD) Unmanned Surface Vehicle (USV), the iRobot PackBot, and the Family of Integrated Rapid Response Equipment (FIRRE) vehicles and sensors. This paper will discuss how software and hardware modularity has allowed SSC San Diego to create a single operator control unit (OCU) with the capability to control a wide variety of unmanned systems.
منابع مشابه
Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملWorkspace Boundary Avoidance in Robot Teaching by Demonstration Using Fuzzy Impedance Control
The present paper investigates an intuitive way of robot path planning, called robot teaching by demonstration. In this method, an operator holds the robot end-effector and moves it through a number of positions and orientations in order to teach it a desired task. The presented control architecture applies impedance control in such a way that the end-effector follows the operator’s hand with d...
متن کاملCONTROL OF FLEXIBLE JOINT ROBOT MANIPULATORS BY COMPENSATING FLEXIBILITY
A flexible-joint robot manipulator is a complex system because it is nonlinear, multivariable, highly coupled along with joint flexibility and uncertainty. To overcome flexibility, several methods have been proposed based on flexible model. This paper presents a novel method for controlling flexible-joint robot manipulators. A novel control law is presented by compensating flexibility to form a...
متن کاملDesign and Evaluation of a Multi-Robot Control Interface
Designing a human-machine interface for a semi-autonomous mobile multi-robot system is a challenging task. The requirements range from operating in a real time environment, facilitating asynchronous command execution to supporting the operator in dividing his monitoring and control resources among multiple robots. This paper presents the results of two simulations based multi-robot experiments ...
متن کاملShared-Control Paradigms in Multi-Operator-Single-Robot Teleoperation
Extending classical bilateral teleoperation systems to multi-user scenarios allows to broaden their capabilities and extend their applicability to more complex manipulation tasks. In this paper a classical Single-Operator-Single-Robot (SOSR) system is extended to a Multi-Operator-Single-Robot (MOSR) architecture. Two shared-control paradigms which enable visual only or visual and haptic couplin...
متن کامل